women’s style recommendation with artificial intelligence (part #2)

In “women’s style recommendation with artificial intelligence (part #1)”, I introduced my work toward developing artificial intelligence (AI) for fashion and style recommendation. Essentially, its an expert system built on a Bayesian belief network. Now I discuss model validation and next steps in the design iteration process. I first wanted to see if the trained […]

toward automated fashion recommendation using OpenIE

Open information extraction (OpenIE) enables the extraction of relationships from text data. This differs from previous relationship extraction methods in that one need not provide a relationship schema in advance [1]. This same reference provides an infographic of the process that we’ll simply quote directly [1]: We tested this method on style advice for “rectangular-bodied” […]

encoding fashion rules into mathematical data structures (part one)

As we build our fashion recommendation engine, we seek rules to populate it with. With few exceptions (e.g. [1]), we find these rules encoded in prose or infographic form, rather than a semantic web form suitable for computation. For example, [2] provides written advice on dressing fabulously for a “rectangular” women’s body type. The writers […]

artificial intelligence in fashion (part two: a first step)

In my last post, “artificial intelligence in fashion (part one: brainstorming)“, I produced a list of big ideas on how machine learning and artificial intelligence may be applied to the fashion industry. I addressed sizing, marketing, and design activities when brainstorming this list. This post doesn’t specifically cover an artificial intelligence solution, but it lays […]

artificial intelligence in fashion (part one: brainstorming)

Brainstorming as usual: Fashion dictums involve many IF-THEN-ELSE rules. One can convert this into a decision engine (inference engine). User specifies their body shape, and a recommendation engine selects suitable clothing for them, taking into account the user’s tastes. Upload an image of a dress you want to buy, and specify the dress’s given size. […]

pseudo-harmonic FOREX prediction with machine learning (part one)

“Harmonic” trading methods seek patterns in the relationships between neighboring peaks and valleys in the time series. Particularly, harmonic traders seek pre-specified ratios in the price differences among a series of peaks and valleys. For example, a trader might observe the following pattern: Let A, B, C, D, and E be the points in the […]

picking stocks by graph database (part 2: machine learning)

In our last post, we demonstrated a graph database created to enable study of the stock market, particularly the study of causality relationships. So how to proceed from there? At this stage we want to pick winning stocks, not write an academic paper, so our focus turns toward practical machine learning. Source Data We start […]